Handout for Week 7: Logic II

Philosophy of Language.
Metavocabularies of Reason:
Pragmatics, Semantics, and Logic
https://sites.pitt.edu/~rbrandom/Courses

1. Two related senses of implicit/explicit in reason relations and deontic pragmatics:

First Parallel:

a1) $\Gamma \mid \sim \mathbf{A}: G \in \Gamma$ is part of the explicit content of Γ (is explicitly contained in Γ, as a member of that set), and A is part of the implicit content of Γ (in the literal sense of being implied by Γ).
a2) $\Gamma \mid \sim \mathbf{A}$: the explicit commitment to accept all of Γ precludes entitlement to deny A , which is implicit commitment to accept A -in the sense that acceptance is the only sort of attitude (to accept/reject) to which one can be entitled to commit oneself w/res to A, since $\Gamma \mid \sim \mathrm{A}$.

Second Parallel:

b1) Explicitation: when $\Gamma \mid \sim A$, we make the implicit content A explicit as a premise and compare the implicit content of Γ (its consequences) with the implicit content of $\Gamma \cup\{\mathrm{A}\}$, i.e.
$\{\mathrm{X}: \Gamma \mid \sim \mathrm{X}\}$ and $\{\mathrm{Y}: \Gamma, \mathrm{A} \mid \sim \mathrm{Y}\}$.
CM entails $\{\mathrm{X}: \Gamma \mid \sim \mathrm{X}\} \subseteq\{\mathrm{Y}: \Gamma, \mathrm{A} \mid \sim \mathrm{Y}\}$. Explicitation does not subtract consequences.
CT entails $\{\mathrm{Y}: \Gamma, \mathrm{A} \mid \sim \mathrm{Y}\} \subseteq\{\mathrm{X}: \Gamma \mid \sim \mathrm{X}\}$. Explicitation does not add consequences.
Together they entail that explicitation is inconsequential: $\{\mathrm{Y}: \Gamma, \mathrm{A} \mid \sim \mathrm{Y}\}=\{\mathrm{X}: \Gamma \mid \sim \mathrm{X}\}$.
b2) Inference (inferring): Actually accepting (= explicitly acknowledging commitment to accept) what one is implicitly committed to accept, in the sense of (a2).
This is the act of drawing consequences:
explicitly acknowled ging some of the implications of one's other commitments.
It is a paradigmatic rational activity.

Conclusion:

If explicitation is inconsequential, then inference is impotent.

If inferring is not impotent, then inference can add new implicit commitments (consequences) and subtract old ones.
Inferring can be ampliative and lead to new knowledge (consequences), or corrective and guard us from (lead us to reject) old mistakes (implications).

Argument:

- Inference is not in general impotent, so explicitation is not in general inconsequential.
- So CM and CT are not part of the universal and invariable structure of reason relations.
- So we want logical metavocabularies to be able to codify reason relations with open structure: hypernonmonotonic (denies not just the stronger MO but also the weaker CM) and nontransitive (denies not just the stronger mixed-context Cut, but also the weaker shared-context Cut $=\mathrm{CT}$).
- That is, the ideal logic should have the expressive power to make explicit reason relations that do not have the closure structure (monotonic and transitive) of classical (and intuitionist) logical reason relations.
Note: It need not be a nonmonotonic (and nontransitive) logic.
The purely logical consequence relation of NM-MS is fully monotonic and transitive.(!) But the consequence and incompatibility relations of the logically extended vocabulary NM-MS defines are not-or it couldn't conservatively extend a substructural base vocabulary.
But it must be a logic with the expressive power explicitly to express reason relations that are both hypernonmonotonic and nontransitive.

2. A vocabulary $=_{\mathrm{df}}$ a lexicon, L a set of sentences, together with a set R^{2} of reason relations (sequents, codifying good implications) on that lexicon: $\left\langle\mathrm{L}, \mathrm{R}^{2}\right\rangle$.
$\mathrm{R}^{2} \subseteq \mathscr{P}(\mathrm{~L}) \mathrm{x} \mathcal{P}(\mathrm{L}) . \quad\langle\Gamma, \Delta\rangle \in \mathrm{R}^{2}$ iff $\Gamma \mid \sim \Delta$.
3. Logical vocabularies are rational metavocabularies, in the sense that the lexicon and reason relations of the logical metavocabulary is wholly determined in a systematic way by the lexicon and reason relations of some base vocabulary.
Further, logical vocabularies are distinguished from other rational metavocabularies (for instance, semantic ones), by being conservative extensions of their base vocabularies. A logical vocabulary is a conservatively extended elaboration of the base vocabulary.
4. Logical vocabulary is a) elaborated from and b) explicative of ("LX for") its base vocabulary.
Conditionals make implications explicit in the form of claimables expressed by sentences: Deduction-Detachment (DD) Condition on Conditionals: $\quad \Gamma \mid \sim \mathrm{A} \rightarrow \mathrm{B}$ iff $\Gamma, \mathrm{A} \mid \sim \mathrm{B}$.
Negation makes incompatibilities explicit in the form of claimables expressed by sentences: Incoherence-Incompatibility (II) Condition on Negation: $\quad \Gamma \mid \sim \neg A$ iff $\Gamma \# A$.
5. In addition, I articulated the expressive role characteristic of logical rational metavocabularies as being universally and comprehensively LX.

To say that they are universally LX is to say that they can be elaborated from and explicative of any and all vocabularies.
To say that they are comprehensively LX is to say that they explicate the reason relations not only of the base vocabulary, but also of the logically extended vocabulary that is LX for that base.
6. Conservatively extended elaboration of base lexicon:

L is the smallest (by inclusion) superset of L_{0} (the base of the induction) such that if the elements above the line are in L , then so are the elements below the line (the inductive step):

$$
\underset{\neg \alpha \in \mathrm{L} \quad \alpha \rightarrow \beta \in \mathrm{~L} \alpha \& \beta \in \mathrm{~L}}{\underline{\alpha, \beta \in \mathrm{~L}}} \quad \alpha \vee \beta \in \mathrm{~L} .
$$

7. Conservatively extended elaboration of base reason relations (implications as sequents): Corresponding to the requirement that $\mathrm{L}_{0} \subseteq \mathrm{~L}$, we have (base of the induction):

Axiom of NM-MS:

$$
\frac{\Gamma \mid \sim_{0} \Delta}{\Gamma \mid \sim \Delta}
$$

And corresponding to the rules we close under (inductive step) are rules of the form:

L\&: $\frac{\Gamma, \mathrm{A}, \mathrm{B} \mid \sim \Theta}{\Gamma, \mathrm{A} \& \mathrm{~B} \mid \sim \Theta} \quad$ R\&: $\frac{\Gamma|\sim \mathrm{A}, \Theta \Gamma \Gamma| \sim \mathrm{B}, \Theta}{\Gamma \mid \sim \mathrm{A} \& \mathrm{~B}, \Theta}$
R^{2} is then the smallest (by inclusion) superset of $\mathrm{R}^{2}{ }_{0}$ (that is the effect of the Axiom for NM-MS) such that if the sequents (implications, reason relations) above the line are in R^{2}, then so are the sequents below the line.
8. We conservatively extend the reason relations of the base vocabulary to reason relations for the logically extended vocabulary by following this model and, in the context of the Axiom for NM-MS (above) applying all the connective rules for
NM-MS (NonMonotonic-MultiSuccedent logic):

Expressive (Principal) Connectives:

L \rightarrow :	$\Gamma \mid \sim \Theta, A$	В, $\Gamma \mid \sim \Theta$	$\mathrm{R} \rightarrow$:	$\underline{A, \Gamma \mid \sim \Theta, B}$
		$\Gamma \mid \sim \Theta$		$\Gamma \mid \sim \Theta, A \rightarrow B$
$\mathrm{L} \neg$:			$\mathrm{R} \neg$:	$\underline{A, \Gamma \mid \sim \Theta}$
				$\Gamma \mid \sim \neg \mathrm{A}, \Theta$

Aggregative (Auxiliary) Connectives:

L\&: $\frac{\Gamma, \mathrm{A}, \mathrm{B} \mid \sim \Theta}{\Gamma, \mathrm{A} \& \mathrm{~B} \mid \sim \Theta}$
$L \vee: \frac{A, \Gamma|\sim \Theta \quad B, \Gamma| \sim \Theta}{A \vee B, \Gamma \mid \sim \Theta}$

R\&: $\quad \underline{\Gamma \mid \sim A, ~} \Theta \quad \Gamma \mid \sim \mathrm{B}, \Theta$
$\Gamma \mid \sim \mathrm{A} \& \mathrm{~B}, \Theta$
$\mathrm{R} \vee: \quad \quad \quad \Gamma \mid \sim \mathrm{A}, \mathrm{B}, \Theta$
$\Gamma \mid \sim \mathrm{A} \vee \mathrm{B}, \Theta$

